INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2021-22 Statistics - II, Midterm Examination, March 10, 2022

Maximum Marks: 50 Time: $2\frac{1}{2}$ hours Answer all questions

1. Let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be independent random samples, respectively, from $N(\mu, 1)$ and $N(2\mu, 1)$, where $-\infty < \mu < \infty$ is the unknown parameter.

(a) Does this model belong to the exponential family of distributions? Justify.

(b) What is minimal sufficient for μ ?

(c) Find the MLE of μ .

(d) Suppose m = n and let \bar{X} and \bar{Y} be the respective sample means. Consider the class of all unbiased estimators of μ of the form $a\bar{X} + b\bar{Y}$ where a and b are real numbers. Find the estimator in this class with the smallest [4+4+6+6]variance.

2. Let $X \sim \text{Poisson}(\lambda), \lambda > 0$. Define $\theta = \lambda^2 \exp(-2\lambda)$.

(a) Show that $E\left\{(-1)^X X(X-1)\right\} = \theta$.

(b) Consider a random sample X_1, X_2, \ldots, X_n from the X population. Find the UMVUE of θ . [5+7]

3. Let $\mathcal{G}(\lambda, \alpha)$ denote the Gamma distribution with parameters $\lambda > 0$ and $\begin{array}{l} \alpha > 0 \mbox{ and with the p.d.f.} \\ f(x|\lambda,\alpha) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} \exp(-\lambda x) x^{\alpha-1}, \ x > 0. \end{array}$

Suppose $X_1 \sim \mathcal{G}(\lambda, 5)$ and is independent of $X_2 \sim \mathcal{G}(\lambda, 6)$, and let Y = $X_1 + X_2, Z = X_1/Y.$

(a) Show that Y is complete sufficient for λ .

(b) Show that Y and Z are independently distributed. [5+4]

4. Consider X_1, X_2, X_3, X_4 i.i.d Bernoulli(p), 0 and let <math>Y = $X_1 + X_2, Z = X_3 + X_4.$

(a) Find the conditional distribution of (X_1, X_2, X_3, X_4) given (Y, Z) and using it show that (Y, Z) is sufficient for p.

(b) Show that (Y, Z) is not minimal sufficient for p. [5+4]